
Catching the LoRa ADR bandit
with a new Sheriff: J-LoRaNeS

Contacts
IRISA/GRANIT

6 rue de Kerampont – 22300 Lannion, France
firstname.lastname@irisa.fr

CG-Wireless
Le Moustoir, 29710 Plogastel St-Germain, France
firstname.lastname@cgwi.fr

Jules COURJAULT1

Baptiste VRIGNEAU1

Olivier BERDER1

Claude GUICHAOUA2

Yvon LEGOFF2

1Univ Rennes, CNRS, IRISA
2CG-Wireless

References
[1] J. Bezanson & al., “Julia: A Fresh Approach to Numerical Computing”, SIAM Review, 2017
[2] S. Li & al. “How agile is the adaptive data rate mechanism of LoRaWAN?” IEEE Global Communications conference (GLOBECOM), 2018
[3] D. Croce et al., “Impact of LoRa imperfect orthogonality! Analysis of lin-level performance”, IEEE Communications Letters, 2018
[4] LoRa Alliance, “LoRaWAN v1.1 specifications”, 2017. Available at https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
[5] R. S. Sutton & al. Reinforcement Learning: An introduction, MIT press, 2018
[6] D. J. Russo & al., “A tutorial on Thomson-Sampling”, Foundations and Trends in Machine Learning, 2018

• Find a MAB algorithm that can outperform the LoRaWAN ADR, even with duty-cycle limitation.
• Include energy in the reward computation to make the communication energy efficient

Perspectives
Conclusions

• J-LoRaNeS is very flexible, and simulator behavior can be easily adapted
• The duty-cycle limitation can have a huge impact on the performance of MAB-based

ADR algorithm, especially for dense networks.

Multi-armed Bandit algorithm for parameters selection
1. UL is received by the GW. After UL reception a DL is

sent and received. Good arm performance estimation

2. UL is received by the GW. After UL reception a DL is

sent and lost. Bad arm performance estimation

3. UL is received by the GW. No DL sent after UL

reception. Bad arm performance estimation

4. UL is lost due to channel or collision.

Good arm performance estimation

The study [2] demonstrates several flaws in the LoRaWAN ADR
algorithm. Several propositions of enhancement have been made, and
some of them are based on Multi-Armed Bandit (MAB) algorithm. But,
those enhancements have an issue: they do not respect the duty-cycle
of 1% or 10% imposed by regulation. The respect of duty-cycle can lead
to bad arm performance estimation due to the absence of feedback. The
question is then: what happens to the performance of MAB-based ADR
algorithms when the duty-cycle is properly respected?

The exploration probability ε can be fixed or

dynamic. Here ε = 𝐾/σ𝑘=1
𝐾 𝑁𝑘, to ensure high

exploration at the beginning, and high
exploitation after a certain time.

Draw 𝑥 ∈ [0,1] arm = argmax
k

𝜃𝑘

Choose an arm
randomly

Send UL
packet

𝜃arm =
𝑁𝑎𝑟𝑚 𝜃𝑎𝑟𝑚 + 𝑟

𝑁𝑎𝑟𝑚 + 1
𝑁𝑎𝑟𝑚 = 𝑁𝑎𝑟𝑚 + 1

𝑥 ≥ 𝜀
yes

no

𝑟 = ቊ0 if DL
1 if DL

ε-Greedy ADR algorithm [5]

The random variables allows to select the arms with high
average rewards or the ones that are worth exploring, i.e.,
with a high variance and rather high average.

Draw 𝑥𝑘 = 𝑋𝑘~Beta 𝛼𝑘, 𝛽𝑘 𝑘

arm = argmax
k

𝑥𝑘

Send UL packet

𝛼𝑎𝑟𝑚 = 𝛼𝑎𝑟𝑚 + 𝑟
𝛽𝑎𝑟𝑚 = 𝛽𝑎𝑟𝑚 + 1 − 𝑟

𝑟 = ቊ0 if DL
1 if DL

Thomson-Sampling ADR algorithm [6]

The ADR is split into 2 algorithms with different objectives:
• Algorithm on server (presented above): make the communication

as energy efficient as possible.
• Algorithm on node: reach a GW whatever the energy cost.

Record SNR

of UL packets
N UL packets
recorded ?

Compute 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛

Nstep = 𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛/3

Send MAC
commands

yes

no

𝑆𝐹 = 𝑆𝐹 − 1
𝑁𝑠𝑡𝑒𝑝 = 𝑁𝑠𝑡𝑒𝑝 − 1

𝑇𝑃 = 𝑇𝑃 + 3
𝑁𝑠𝑡𝑒𝑝 = 𝑁𝑠𝑡𝑒𝑝 + 1

yes

no 𝑁𝑠𝑡𝑒𝑝 > 0 and

𝑆𝐹 > 𝑆𝐹min

yes

no 𝑁𝑠𝑡𝑒𝑝 > 0 and

𝑇𝑃 > 𝑇𝑃𝑚𝑖𝑛

yes

no 𝑁𝑠𝑡𝑒𝑝 < 0 and

𝑇𝑃 > 𝑇𝑃𝑚𝑎𝑥

𝑇𝑃 = 𝑇𝑃 − 3
𝑁𝑠𝑡𝑒𝑝 = 𝑁𝑠𝑡𝑒𝑝 − 1

LoRaWAN ADR algorithm [4]

Context:
• Massive LPWAN deployment
• LoRa communication optimization
• LoRa Network simulation

Originality:
• We developed a LoRa network simulator highly customable with the Julia language
• Performance study of MAB-based Adaptive Data Rate algorithm with duty-cycle constraint (unreliable feedback)

ADR performance comparison
Oracle: In this configuration the GW does not
respect the duty-cycle.
Real: In this configuration the duty-cycle is
respected by the GW.
Simulation setup: 500 EDs, 1 GWs, 1 packet
every 10 mins on average.
A Voronoi tessellation has been added on the
map to help with the visualization.
The PDR maps show that nodes far from the
GW have bad communication performance
for MAB-based algorithm. That lack of PDR is
explained by a bad arm selection, as shown
in most used SF maps. That bad selection is
caused by the lack of feedback from the GW
due to the duty-cycle. Nodes close to the GW
are not affected because every configuration
allows good performance in this case.

• Fast convergence time for Oracle algorithm, with
higher performance than LoRaWAN ADR.

• But high penalty on performance for real cases, i.e.,
respecting the duty-cycle at GW level.

J-LoRaNeS : A Julia based LoRa Network Simulator

We used the Julia language [1] to develop the simulator. This language was recently developed at the MIT, it is
easy to use as Python, and since it is a compiled language, the code can be executed quickly. Moreover, Julia relies
on multiple dispatch, which allows a huge flexibility for the simulator. Indeed multiple dispatch is a mechanism
that will choose the right function behavior according to the input’s type during the execution of the algorithm.

The simulated behavior of an End-Device(ED)/Gateway(GW) interaction is as follows:

1. The ED sends a packet, it needs to have a Received Signal Strength Indicator (RSSI) higher than a sensitivity
threshold and a Signal to Interference Ratio threshold [3] to be received by GWs

2. The server updates the ADR mechanism on his side, and chooses a spreading factor (SF) and Transmit Power
(TP) values for the ED next communication. Those values are sent to the ED through a Downlink (DL)message.

3. A DL packet is sent only if a GW is available and if it has received the corresponding uplink (UL).
4. The ED updates the policy and selects the new communication parameters for the next uplink message, even

if the downlink message has not been received.

Real ε-Greedy Real TS LoRaWAN ADR

Packet Delivery Rate for each end-device of the network

Most used SF for each end-device of the network

Beta distribution example

Select
transmissions
parameters

Send packet

Interference
+ noise

Update
allocation

strategy (node
side)

Receive DL
packet

Channel
attenuation

RSSI >
Sensitivity

Collision ?

Packet received Packet lost

ΔRSSI > Collision
Threshold

Update
allocation

strategy (server
side)

Send DL packet

Interference
+ noise

Channel
attenuation

End Device Channel Gateway

Data

yes

yes
no

no

1

2

3

4

Network topology metrics

Possible interaction between ED and GW

Action
State:
reception of
a DL packet

Agent : Node

Computing the
reward 𝑟

Updating the
policy

Action : choosing the
parameters (𝑆𝐹, 𝑇𝑃)

Environment

• Exploration: the algorithm tries to find a better arm
• Exploitation: the algorithm uses the best arm, to his knowledge

Application of MAB to LoRa

https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/

