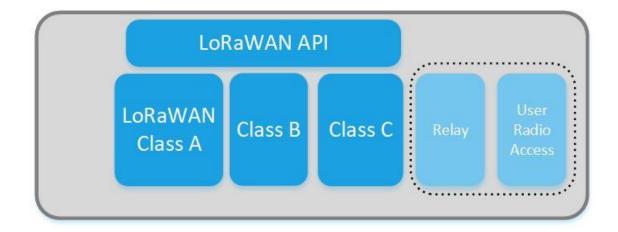


OVERVIEW / LoRa Basics™ Modem Architecture


OVERVIEW / LoRaWAN STACK

LoRaWAN® Stack Features:

- L2 V1.0.4
- Class A, B and C
- Full RP2 -1.0.3
- LRFHSS support
- Management of Multicast (up to 4 sessions)
- LBT
- Duty Cycle (both for normal transmissions and for join procedure)
- Passing LoRa Alliance® certification for all regions
- Automatic board delay compensation (for rx1, rx2)
- Datarate Profile (Long Range, Low Power, Custom)

LoRaWAN® Code Structure

- A unique state machine in class A
- Class A, class B and class C implementation fully independent
- LBT and DTC are fully independent (services)
- Region fully separated (with REAL)
- Failsafe and watchdog integrated
- Nothing is done under it except flagging
- RTOS or bare metal.
- Generic secure element interface (reuse from LoRaMac-Node™)
- Code size: 35 KB with 14KB for all regions
- Dedicated API

Overview / Services / Upper layer

LoRaWAN Packages:

- Clock sync package
- FUOTA (not publicly available)

LoRa Basics™ Modem Services:

- Device management (cloud services)
- Large file upload (fragmentation + redundancy)
- Stream (fragmentation / aggregation + redundancy)
- Large file download
- Geolocation services (for LoRa Edge™)

LoRa Basics™ Modem Supervisor:

- Launches and updates high-level tasks
- Arbiter between user request and internal services
- Scheduler, but without real-time constraints.

Supervisor Engine Modem LoRaWAN Geolocation Device Services Packages Middleware management

Modem Core

Modem API

LoRa Basics™ Modem API:

Asynchronous events (Reset, Joined, TxDone, DownData, NewLinkAdr, ...)

Overview / Simplified production

LoRaWAN Certification	LoRa Basics™ Modem certified by an independent test house
FCC/ETSI certification	Test mode embedded
32K crystal accuracy	Crystal error as an input to adapt timing for RX windows / ping slots Digital PLL to track beacon in class B
Power offset, board delay,	Adaptative RX windows to estimate and compensate board delay (tcxo delay for example)
Battery life estimation	get charge natively implemented, distribution of data rates
Reliability	failsafe, watch dog, non regression test suites (end nodes to multiple network providers)
Switch dynamically between region	No impact on code size, only extra RAM
LoRaWAN downlink for configuration	Ex: Rejoin natively embedded even in 1.0.4
FUOTA	Natively embedded as a service (flag of compilation)
Mcu Porting	toolchain to ease/validate the mcu porting
Check FW download in production	provide firmware version with a short delay

Key Requirements

- Reduced complexity:
 - <u>Just for Class A</u>: Fine tune RX timing (32k), back off procedure, max payload size, ack strategy, rejoin, certification, test mode, FOPTS or port 0, multiple regions support
- Release radio access after LoRaWAN transaction
- Reliability
- Code size / Ram size reduction
- State of the art of the TC recommendations
- MCU agnostic
- Bare metal or RTOS
- Ready for production

What's Behind

- Development started in 2017
- Feedback collected with LoRaMac-node(Miguel LUIS is a key contributor)
- Feedback coming from both end node customers and GW providers
- Extremely involved in the LoRa Alliance (for ex: LBM is ready for relay features)
- 4 fulltime C developers and up to ~10 with contractors
- Reliability:
 - ISO9001 certified
 - A dedicated (independent) validation/verification teams
 - Non regression end to end tests (nightly, light, full)
 - RF validations tests in temperatures (PER, Power, ...)
 - Multiple NS are continuously tested (SENET, TTN, ORANGE, HELIUM, CHIRPSTACK,...)
 - Use an independent test house (DEKRA) to certify the stack
 - Estimated duration ~ 1 month for the overall validation & certification

LBM Demo

FAQ

What are the differences between the two stacks?

- Support multiple radio access
- **Data Rate Profile** (long range, low power, custom)
- A unique state machine in class A
- Class A, Class B and Class C implementation fully independent
- LBT and DTC are fully independent (services)
- Failsafe and watchdog integrated

What would compel developers to use this version of the stack?

• Relay, stack V1.2, interleave LoRaWAN standard with another protocol in parallel, multi-stacks, multiple regions in parallel

If there are differences in protocol behavior between the two, how to deal with that?

No

Is it 100% backwards compatible?

User API is different

Licensing terms?

BSD 3-Clause Clear License

Pass LCTT and certification?

Yes, all regions certified both with LCTT and DEKRA test house

For the latest version of

LoRa Basics™ Modem

Visit

https://github.com/Lora-net/SWL2001

